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a b s t r a c t

This paper investigates identification of Wiener systems with quantized inputs and binary-valued output
observations. By parameterizing the static nonlinear function and incorporating both linear and nonlinear
parts, we begin by investigating system identifiability under the input and output constraints. Then a
three-step algorithm is proposed to estimate the unknown parameters by using the empirical measure,
input persistent patterns, and information on noise statistics. Convergence properties of the algorithm,
including strong convergence and mean-square convergence rate, are established. Furthermore, by
selecting a suitable transformationmatrix, the asymptotic efficiency of the algorithm is proved in terms of
the Cramér–Rao lower bound. Finally, numerical simulations are presented to illustrate the main results
of this paper.
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1. Introduction

Wiener systems are often used to describe nonlinear systems
in practice. Such systems are typically comprised of two blocks:
a linear dynamic system followed by a nonlinear static function.
Practical Wiener systems are exemplified by distillation columns
(Zhu, 1999), pH control processes (Kalafatis, Arifin, Wang, &
Cluett, 1995), and biological systems (Hunter & Korenberg, 1986).
Theoretically, some nonlinear systems, which are not of a Wiener
structure, may be represented or approximated by a multivariate
Wienermodel (Boyd & Chua, 1985). Consequently, its study carries
profound theoretical and practical significance.

Identification ofWiener systems has drawn great attention and
experienced substantial advancement. Fundamental progress has
been achieved in methodology development, identification algo-
rithms, essential convergence properties, and applications (Chen
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& Zhao, 2014; Giri & Bai, 2010; Greblicki, 1997; Hagenblad, Ljung,
& Wills, 2008; Wang & Ding, 2011; Wills, Schon, Ljung, & Nin-
ness, 2011; Zhu, 1999). Zhu (1999) extended an identification
method for multi-input single-output Wiener models and applied
it to identify two distillation columns. Hagenblad et al. (2008) em-
ployed the Maximum Likelihood (ML) method to identify Wiener
systems, and discussed efficient implementation issues forWiener
systems under disturbances. Wang and Ding (2011) derived an
LS-type gradient-based iterative identification algorithm for
Wiener systems. Chen and Zhao (2014) used stochastic approxi-
mation algorithms with expanding truncation to identify Wiener
systems. Greblicki (1997) introduced a nonparametric approach to
Wiener system identification. Wills et al. (2011) developed a new
ML-based algorithm for identifying Hammerstein–Wienermodels.
Giri and Bai (2010) summarized progress on identification meth-
ods of block-oriented nonlinear systems.

Along with the rapid advancement of sensor and communi-
cation technologies (Shen, Tan, Wang, Wang, & Lee, 2015; Xie &
Wang, 2014), system identificationunder binary-valued/quantized
observations has also drawn a lot of attention during the
past decade (Casini, Garulli, & Vicino, 2012; Godoy, Goodwin,
Agüero, Marelli, & Wigren, 2011; Guo & Zhao, 2013; Wang, Yin,
Zhang, & Zhao, 2010; Wang, Zhang, & Yin, 2003; Wigren, 1998).
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Identification of Wiener systems under binary-valued/quantized
observations becomes naturally an interesting problem. Zhao,
Wang, Yin, and Zhang (2007) presented the first algorithm to this
problem. Under scaled full-rank periodic inputs and binary-valued
observations, Zhao et al. (2007) showed that the identification of
Wiener systems could be decomposed into a finite number of core
identification problems. The concept of joint identifiability of the
core problem was introduced to capture the essential conditions
under which a Wiener system could be identified with binary-
valued observations. A strongly convergent algorithm was con-
structed and proved to be asymptotically efficient for the core
identification problems, achieving asymptotic optimality in its
convergence rate. The idea and technique developed in Zhao et al.
(2007) has also been successfully applied to identification of Ham-
merstein systems with quantized observations (Zhao, Wang, Yin,
& Zhang, 2010).

However, commonly encountered inputs are not necessarily
periodic. Input signals often cannot be arbitrarily selected to
be periodic (Kang, Zhai, Liu, & Zhao, 2015; Ljung, 1987), and
in adaptive control the control input is adjusted in real time
and is usually non-periodic (Guo, 1993; He, Zhang, & Ge, 2014).
Under both quantized inputs and quantized output observations,
Guo, Wang, Yin, Zhao, and Zhang (2015) offered a constructive
method to identify finite impulse response (FIR) systems, in which
regressor sequences were classified into distinct pattern sets
according to their values. It was shown that input–output data
could be grouped, without losing any information, on the basis of
both quantized output observations and input regressor patterns
andused to derive an asymptotically efficient algorithm. This paper
extends this idea to identify Wiener systems under quantized
inputs and binary-valued output observations.

Different from the identification algorithms for linear systems
in Guo et al. (2015), identification of Wiener systems is more
complex, mainly because the internal variables between the linear
and nonlinear subsystems are unmeasured, making it hard to
identify the subsystems individually. In this paper, for identifiable
Wiener systems, a three-step identification algorithm is proposed.
The first step aims to estimate the output of the nonlinear
function by using empirical measures and organize its inputs
a finite number of possible values defined as the products of
basic persistent patterns and parameters of the linear dynamics.
Then the second step estimates the parameters of the nonlinear
function and its input values jointly. Finally, the third step
estimates the parameters of the linear dynamics. Under some
typical assumptions on system order, input persistent excitation,
and noise distribution functions, the algorithm is shown to be
strongly convergent and asymptotically efficient in terms of the
Cramér–Rao (CR) lower bound.

The rest of the paper is organized into the following sections.
Section 2 formulates the Wiener systems identification problem
with quantized inputs and binary-valued observations. System
identifiability under input and output quantization is discussed in
Section 3. A three-step identification algorithm is introduced in
Section 4 based on empirical measures, persistent patterns, rela-
tions between the linear and nonlinear subsystems. Section 5 es-
tablishes convergence properties of the algorithm, including strong
convergence, mean-square convergence rate, and asymptotic
efficiency. A numerical case study is presented in Section 6 to
demonstrate effectiveness of the algorithm and the convergence
properties. Finally, findings of the paper are summarized in Sec-
tion 7, together with remarks on some open issues.

2. Problem formulation

Consider a single-input-single-output discrete-time Wiener
system described by
Fig. 1. System configuration.xk =

n
i=1

aiuk−i+1

yk = H(xk, η) + dk

(1)

whereuk, xk and dk are the input, the intermediate variable, and the
system noise, respectively. H(·, η) : DH → R is a parameterized
static nonlinear function with domain DH ⊆ R and vector-valued
parameter η ∈ Ωη ⊆ Rm. Both n andm are known. By defining the
regressor φk = [uk, . . . , uk−n+1]

′ and θ = [a1, . . . , an]′, the linear
dynamics can be expressed compactly as xk = φ′

kθ . Here z
′ denotes

the transpose of z ∈ Rι1×ι2 for a vector or matrix.
The system structure is shown in Fig. 1, in which the input uk is

quantized and takes a finite number of possible values, uk ∈ U =

{µ1, . . . , µr}. The output yk is measured by a binary sensor with a
finite threshold C ∈ R, which can be represented by an indicator
function

sk = I{yk≤C} =


1, yk ≤ C;

0, otherwise. (2)

Based on {uk} and {sk}, this paperwill first discuss the issue of iden-
tifiability, then design an algorithm to identify θ and η for identi-
fiable systems, and finally establish key convergence properties of
the algorithm.

Assumption 2.1. Suppose that {dk} is a sequence of i.i.d. (indepen-
dent and identically distributed) random variables. The accumula-
tive distribution function F(·) of d1 is invertible and the inverse
function denoted by F−1(·) is twice continuously differentiable.
The moment generating function of d1 exists.

Remark 2.1. In this paper, the output quantizer is binary-valued
with the threshold C . For multi-threshold quantizers, the reader
is referred to Wang et al. (2010) in which a quasi-convex com-
bination technique was introduced to combine information from
different thresholds and to achieve asymptotic efficiency. For
more general quantizers, Wigren (1998) introduced a stochastic
gradient-based adaptive filtering algorithm. Its analysis method
with an associated differential equation may be useful for other
types of systems.

3. System identifiability

System identification addresses the fundamental issue: Un-
der what conditions, the parameters of a Wiener system can be
uniquely determined from its noise-free input–output observa-
tions? For identifiable systems, algorithms can then be developed
to estimate system parameters under noisy observations.

Suppose that u = {uk, k = 1, 2, . . .} is an arbitrary input
sequence taking quantized values in U = {µ1, . . . , µr}. The
input u generates a regressor sequence {φ′

k} that takes values
in l = rn possible (row vector) patterns denoted by P =

{π1, . . . , πl}. Pattern examples include π1 = [µ1, . . . , µ1, µ1],
π2 = [µ1, . . . , µ1, µ2], etc.

For a given input sequence u and its corresponding regres-
sor sequence {φ′

n+1, . . . , φ
′

n+N}, denote (N-dependent) Nj =N
i=1 I{φ′

n+i=πj}, j ∈ L = {1, . . . , l}. That is, {φ′

n+1, . . . , φ
′

n+N} con-
tains Nj copies of the pattern πj.
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Assumption 3.1. The input sequence u is deterministic. There
exists βj ≥ 0 such that limN→∞ Nj/N = βj. If βj > 0, then the
pattern πj is said to be persistent in u. Without loss of generality,
suppose that for the input u under study, βj ≠ 0 for j ∈ L0 =

{1, . . . , l0} and βj = 0 for j ∈ L−

0 = {l0 + 1, . . . , l}.

It will become clear that convergence properties depend only
on persistent patterns. As a result, the non-persistent patterns
πl0+1, . . . , πl ∈ L−

0 will not be used in designing algorithms.
Denote wj = πjθ . Then, the input–output mapping of the

nonlinear function becomes
H(w1, η) = α1,

...
H(wl0 , η) = αl0 ,

(3)

where the output α = [α1, . . . , αl0 ]
′

∈ Rl0 can be derived
from observed data and are considered to be known in study of
identifiability.

Let

Ψ =

π1
...

πl0

 , (4)

and assume that Ψ has full column rank (then l0 ≥ n), which
is a basic persistent excitation condition in identification of FIR
systems with quantized inputs and outputs (Guo et al., 2015).
Hence, one can always select n patterns from π1, . . . , πl0 such that
their transposes constitute a basis ofRn. Without loss of generality,
let these n patterns be π1, . . . , πn, which will be called the set of
basic persistent patterns.

Consequently, all other persistent patterns can be represented
by the basis, π ′

j =
n

i=1 γj,iπ
′

i , j = n + 1, . . . , l0, which implies
that

wj =

n
i=1

γj,iwi, j = n + 1, . . . , l0.

Substituting these into (3), we have

H(w1, . . . , wn, η) = α, (5)

with H(w1, . . . , wn, η) = [H(
n

i=1 γ1,iwi, η), . . . ,

H(
n

i=1 γl0,iwi, η)]′.
Equality (5) contains l0 equations and n + m unknowns. If the

solution to (5) exists and is unique, then η andW , [w1, . . . , wn]
′

can be obtained. Furthermore, θ can be derived from W since
W = Ψ̄ θ and Ψ̄ is full rank with Ψ̄ , [π ′

1, . . . , π
′
n]

′. In this sense,
the system (1) is identifiable. To ensure this identifiability in the
algorithm design, we give an assumption as follows.

Assumption 3.2. There exists a compact setΞ ⊆ Rl0 that contains
the true output α ∈ Ξ such that for any ξ = [ξ1, . . . , ξl0 ]

′
∈ Ξ ,

the equations

H(x1, . . . , xn, η) = ξ (6)

have a unique solution [x1, . . . , xn, η′
]
′
∈ Rn+m, denoted by ϱ(ξ).

Moreover, ϱ(ξ) is bounded and continuous in Ξ .

For a given full (row) rank matrix Γ ∈ R(n+m)×l0 , denote its
range from Ξ as Ξ 0

= {ζ : ζ = Γ ξ, ξ ∈ Ξ} ⊆ Rn+m. Let

G(x1, . . . , xn, η) = Γ H(x1, . . . , xn, η). (7)

Then, for any ζ ∈ Ξ 0, there exist ξ ∈ Ξ and ξ 0
∈ Rl0 such

that ζ = Γ ξ and ξ = Γ +ζ + (I − Γ +Γ )ξ 0, where + represents
the Moore–Penrose inverse and I is the identity matrix of suitable
dimension. Under Assumption 3.2,H(ϱ(ξ)) = ξ . HenceG(ϱ(ξ)) =

Γ H(ϱ(ξ)) = Γ ξ = ζ , which implies that

G

ϱ(Γ +ζ + (I − Γ +Γ )ξ 0)


= ζ .

Therefore, ϱ(Γ +ζ + (I − Γ +Γ )ξ 0) is a solution of the equation
G(x1, . . . , xn, η) = ζ . We denote it as τ(ζ ) = [τ1(ζ ),
. . . , τn+m(ζ )]′, which means that τi(ζ ) = xi for i = 1, . . . , n and
[τn+1(ζ ), . . . , τn+m(ζ )]′ = η. By Assumption 3.2, α = Γ α ∈ Ξ 0

and τ(ζ ) is bounded and continuous in Ξ 0.
In fact, (7) defines a linear transformation on H(x1, . . . , xn, η)

by the left multiplication of a full-rankmatrix. This transformation
has no effect on the existence of solutions to Eq. (6). In the sub-
sequent algorithm design, Γ will be used to improve convergence
properties of the algorithm in Section 5.

Remark 3.1. If specific parametric models are considered on the
nonlinear function, certain normalization is often needed to ensure
that the parameters are independent. For example, consider the
nonlinear model yk = b0 + b1xk + b2x2k with unknown
parameters [b0, b1, b2]; and the linear dynamic system xk =

a1uk−1. They result in the combined system yk = b0 + b1a1uk−1 +

b2a21u
2
k−1, where there are only three independent parameters, but

four unknowns. Without normalization on the scaling factor, the
parameters cannot be uniquely determined fromany input–output
sequence. As a remedy, one may impose b2 = 1. In this paper, we
assume that such normalization has already been included in the
model parameterization.

4. Identification algorithm

Under Assumption 3.2, by (5) it is known that

τ(α) = [w1, . . . , wn, η
′
]
′
=


W
η


:= ϑ. (8)

Since this mapping τ(·) is known and continuous, one may
estimateα first, and then derive estimates forW andη via (8).With
this in mind, an identification algorithm is constructed as follows,
which is divided into three steps.
Identification Algorithm:

(1) (Estimate α). At N (after N + n observations), for j ∈ L0, by (1)
the system outputs under πj can be described by

yjk = H(πjθ, η) + djk = H(wj, η) + djk
and the corresponding binary-valued observations are denoted
by sjk = I

{yjk≤C}
. Define

S
j
N =


1
Nj

Nj
i=1

sji, Nj ≠ 0;

1
2
, Nj = 0,

(9)

and let

αN =


C − F−1(S

1
N), . . . , C − F−1(S

l0
N )

′

,

αN = Γ ΠΞ

αN

,

(10)

where ΠΞ (z) is a projection from z to Ξ and can be any one in
{ξ ∈ Ξ : ∥ξ − z∥ = minν∈Ξ ∥ν − z∥} for z ∈ Rl0 , and ∥ · ∥ is a
vector norm.

(2) (Estimate ϑ). Under Assumption 3.2, an estimate of ϑ denoted
byϑN can be derived byϑN = τ(αN). (11)
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By using component-wise extraction, an estimate of W de-
noted by WN and an estimate of η denoted by ηN can be ex-
pressed asWN = [τ1(αN), . . . , τn(αN)]′ , (12)ηN = [τn+1(αN), . . . , τn+m(αN)]′ . (13)

(3) (Estimate θ ). Considering that WN = W + eN = Ψ̄ θ + eN with
the estimation error eN = WN − Ψ̄ θ , an estimate of θ can be
constructed asθN = Ψ̄ −1 WN . (14)

5. Convergence properties

This section establishes key convergence properties of the iden-
tification algorithm, including strong convergence, mean-square
convergence rate, and asymptotic efficiency.

5.1. Strong convergence

Theorem 5.1. Consider system (1) with binary-valued observations
(2). If Ψ given by (4) is full column rank, and Assumptions 2.1, 3.1,
and 3.2 hold, thenϑN from (11) converges strongly to the true ϑ ,ϑN → ϑ w.p.1 as N → ∞.

Proof. By the strong law of large numbers and (9), we have
S
j
N → F


C − H(wj, η)


, w.p.1. as N → ∞, which together with

Assumption 2.1 implies that

C − F−1(S
j
N) → H(wj, η) w.p.1. as N → ∞, j ∈ L0.

From (9) and (10), it follows thatαN → α w.p.1 as N → ∞. Since
τ(ζ ) is continuous in Ξ 0, ϑN = τ(αN) → τ(α) = ϑ by (8). This
completes the proof. �

Theorem 5.2. Under the conditions of Theorem5.1,θN from (14) con-
verges strongly to the true θ ,θN → θ w.p.1 as N → ∞.

Proof. By virtue of Theorem 5.1, we have WN → W = Ψ̄ θ , w.p.1.
as N → ∞, which together with (14) yields thatθN = Ψ̄ −1 WN → Ψ̄ −1Ψ̄ θ = θ, w.p.1 as N → ∞. �

5.2. Asymptotic efficiency

For convenience, denote F d(x) = dF(x)/dx, FCH(x) = F(C −

H(x, η)), F d
CH(x) = F d(C − H(x, η)),

Λ = diag


FCH(wj)(1 − FCH(wj))

F d
CH(wj)


j=1,...,l0

, (15)

τ d
j (ζ ) =

∂τj(ζ )

∂ζ
=


∂τj(ζ )

∂ζ1
, . . . ,

∂τj(ζ )

∂ζn+m

′

, and J = [τ d
1 (α), . . . ,

τ d
n+m(α)], also define

B =
∂G
∂ϑ

, D =
∂H
∂ϑ

, (16)

where diag[zj]j=1,...,ι = diag[z1, . . . , zι] is a diagonal matrix. Let
Σ(N; ϑ) represent the covariance matrix of the estimation error
ofϑN , i.e.,

Σ(N; ϑ) = E(ϑN − ϑ)(ϑN − ϑ)′, N = 1, 2, . . . ,

where E(·) is the expectation.
Lemma 5.1. If H(x1, . . . , xn, η) is differentiable at ϑ , then the
Cramér–Rao lower bound for estimating ϑ based on observations of
{sk, 1 ≤ k ≤ N} is

ΣCR(N; ϑ) =

 l
j=1

Nj(F d
CH(wj))

2 ∂H(wj,η)

∂ϑ


∂H(wj,η)

∂ϑ

′

FCH(wj)(1 − FCH(wj))


−1

. (17)

Proof. Let zk be some possible sample value of sk. Since {dk} is
i.i.d, the likelihood function of s1, . . . , sN taking values z1, . . . , zN
conditioned on ϑ is

ℓ(z1, . . . , zN; ϑ)

= Pr{s1 = z1, . . . , sN = zN; ϑ}

=

N
k=1

[F(C − H(xk, η))]zk [1 − F(C − H(xk, η))]1−zk

=

N
k=1

[FCH(xk)]zk [1 − FCH(xk)]1−zk .

Replace the particular realizations zk by their corresponding
random variables sk, and denote the resulting quantity by ℓ =

ℓ(s1, . . . , sN; ϑ). Set M j
N = {k : φ′

k = πj, 1 ≤ k ≤ N} and
χj =

1
Nj


k∈M j

N
sk. It is apparent that Eχj = FCH(wj). Then, we have

ℓ =

l
j=1


k∈M j

N

[FCH(wj)]
sk


1 − FCH(wj)

1−sk

=

l
j=1


FCH(wj)

Njχj

1 − FCH(wj)

Nj−Njχj ,

which leads to log ℓ =
l

j=1


Njχj log FCH(wj)+(Nj−Njχj) log[1−

FCH(wj)]

and

∂ log ℓ

∂ϑ
=

l
j=1


−

NjχjF d
CH(wj)

FCH(wj)

∂H(wj, η)

∂ϑ

+
(Nj − Njχj)F d

CH(wj)

1 − FCH(wj)

∂H(wj, η)

∂ϑ


.

Consequently, it can be verified that

E
∂2 log ℓ

∂ϑ2
= −

l
j=1

Nj(F d
CH(wj))

2 ∂H(wj,η)

∂ϑ


∂H(wj,η)

∂ϑ

′

FCH(wj)(1 − FCH(wj))
,

and (17) follows. �

Remark 5.1. The assumption that the input u is deterministic sim-
plifies analysis. If the input u is stochastic, the regressor sequence
{φk} will be dependent, unless the system is just a gain. As a result,
{sk} becomes dependent even if {uk} is i.i.d. This makes it difficult
to derive the joint distribution of {sk} or obtain the CR lower bound
for estimating ϑ .

Theorem 5.3. Under the conditions of Theorem 5.1 and Lemma 5.1,
if τ(ζ ) is differentiable at α and D in (16) has full row rank, then the
estimateϑN from (11) has the mean-square convergence rate

NΣ(N; ϑ) → (Γ D′)−1Γ Υ 2Λ2Γ ′(DΓ ′)−1 as N → ∞,

where Υ = diag[1/
√

β1, . . . , 1/


βl0 ] and Λ is given by (15).
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Proof. By the mean value theorem, from (8) and (11) there existα1
N , . . . ,αn+m

N on the line segmentαN and α such that

ϑN − ϑ =

τ d
1 (α1

N), . . . , τ d
n+m(αn+m

N )
′

(αN − α). (18)

ByWang et al. (2010), it can be concluded that

Nj(C − F−1(S

j
N)−

H(wj, η))
d
−→ N


0, FCH (wj)(1−FCH (wj))

(FdCH (wj))2


, which implies that

ΥN


C − F−1(S

1
N) − H(w1, η)
...

C − F−1(S
l0
N ) − H(wl0 , η)

 d
−→ N


0, Λ2

as N → ∞, where ΥN = diag[
√
N1, . . . ,


Nl0 ] and

d
−→ denotes

convergence in distribution. In the light of Assumption 3.1,wehave
ΥN/

√
N → Υ −1 as N → ∞. By (10), one can get

√
N (αN − α)

d
−→ N


0, Γ Υ 2Λ2Γ ′


as N → ∞. (19)

Note thatαj
N → α w.p.1. as N → ∞, by (7) and (18)–(19) it can

be seen that

NΣ(N; ϑ)

→ [τ d
1 (α), . . . , τ d

n+m(α)]′Γ Υ 2Λ2Γ ′
[τ d

1 (α), . . . , τ d
n+m(α)]

= J ′Γ Υ 2Λ2Γ ′J, as N → ∞. (20)

In view of (7), one can have B = DΓ ′. Since both D and Γ have
full row ranks, B is full rank. Noticing thatG(τ (α)) = α and τ(α) =

ϑ , we have BJ = JB = I by Theorem 12 in Magnus and Neudecker
(2007). Therefore, J = (DΓ ′)−1 and J ′ = ((DΓ ′)−1)′ = (Γ D′)−1,
which together with (20) implies that

NΣ(N; ϑ) → (Γ D′)−1Γ Υ 2Λ2Γ ′(DΓ ′)−1 as N → ∞,

as claimed. �

Theorem 5.4. Under the conditions of Theorem 5.3, if one selects

Γ = Γ ∗
=


DΥ −2Λ−2D′

−1
DΥ −2Λ−2, (21)

then the estimateϑN from (11) is asymptotically efficient in the sense
that

NΣ(N; ϑ) − NΣCR(N; ϑ) → 0 as N → ∞.

Proof. Since Υ , Λ > 0 and D is full row rank, DΥ −2Λ−2D′ > 0.
Under the hypothesis, Γ ∗D′

=

DΥ −2Λ−2D′

−1 DΥ −2Λ−2D′
= I

by (21). Consequently, we have

(Γ ∗D′)−1Γ ∗Υ 2Λ2(Γ ∗)′(D(Γ ∗)′)−1

= Γ ∗Υ 2Λ2(Γ ∗)′

=

DΥ −2Λ−2D′

−1
DΥ −2Λ−2D′((DΥ −2Λ−2D′)−1)′

=

DΥ −2Λ−2D′

−1
. (22)

By Lemma 5.1, it can be seen that

NΣCR(N; ϑ) →


∂H(w1, η)

∂ϑ
, . . . ,

∂H(wl0 , η)

∂ϑ


Υ −2Λ−2

×


∂H(w1, η)

∂ϑ
, . . . ,

∂H(wl0 , η)

∂ϑ

′−1

=

DΥ −2Λ−2D′

−1
as N → ∞.

This and (22) prove the theorem by virtue of Theorem 5.3. �
Fig. 2. Convergence of WN from (12).

6. Simulation example

Consider a Wiener system, in which the linear dynamics is a
gain system and the output nonlinearity is an exponential function
H(x, η) = 2x

+ η,
xk = ukθ,
yk = H(xk, η) + dk = 2xk + η + dk,

where the true values are θ = 20, η = 30 and {dk} is a sequence
of i.i.d. normal random variables with zero mean and standard
deviation σ = 5. The output yk is measured by a sensor with
thresholdC = 39, andhence sk = I{yk≤39}. The inputuk is quantized
and takes values from U = {µ1, µ2, µ3, µ4} = {0.1, 0.2, 3, 5}.
Since θ ∈ R, we have P = U. Suppose that at step N , the input
sequence generates patterns with the following frequencies

N1 = N − N2 − N3 − N4, N2 = ⌈0.6(N − N3 − N4)⌉,

N3 = min{110, |⌈logN⌉|}, N4 = ⌈
√
N⌉,

where ⌈z⌉ denotes the smallest integer greater than or equal to z ∈

R. As a result, β1 = limN→∞ N1/N = 0.4, β2 = 0.6, β3 = β4 = 0;
and Ψ = [1, 2]′, [w1, w2]

′
= [2, 4]′, α = [α1, α2]

′
= [34, 46]′

by (3) and (4). Let π1 be the basic persistent pattern. Then π2 =

2π1, w2 = 2w1 andW = w1 = 2.
Let Γ = I2×2 and Ξ 0

= Ξ = {[z1, z2]′ ∈ R2
: 28 ≤

z1 ≤ 40, 40 ≤ z2 ≤ 52}. It follows that α = α ∈ Ξ . For any
ξ = [ξ1, ξ2]

′
∈ Ξ , it can be derived that the following equations

H(x1, η) =


H(x1, η)
H(2x1, η)


=


ξ1
ξ2


have a unique solution τ1(ξ) = x1 = log2

 1+
√
1+4(ξ2−ξ1)

2


and

τ2(ξ) = η =
2ξ1−1−

√
1+4(ξ2−ξ1)
2 , indicating that Assumption 3.2

holds.
Using (12) and (13) to compute WN and ηN , the convergence

is shown by Figs. 2 and 3. Furthermore, Fig. 4 demonstrates the
convergence ofθN given by (14).

By H(x, η) = 2x
+ η, one can get

D =


∂H(w1, η)

∂ϑ
,
∂H(w2, η)

∂ϑ


=


4 ln 2 32 ln 2
1 1


,

which illustrates that D is full rank. Since l0 = n + m =

2, Γ ∗
=


DΥ −2Λ−2D′

−1 DΥ −2Λ−2
= (D′)−1. With Γ =

Γ ∗
=

1
28 ln 2


−1 1

32 ln 2 −4 ln 2


, Theorem 5.4 is true and hence ϑN is

asymptotically efficient, which is shown by Fig. 5.
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Fig. 3. Convergence ofηN from (13).

Fig. 4. Convergence ofθN from (14).

Fig. 5. Asymptotic efficiency of ϑN from (11): The red dash line is the Frobenius
norm of NΣCR(N; ϑ) and the blue solid line comes from the average of 100
trajectories of the Frobenius norm ofN(ϑN −ϑ)(ϑN −ϑ)′ . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
7. Concluding remarks

This paper studies identification of Wiener systems under
quantized inputs and binary-valued output observations. After
establishing identifiability conditions, a three-step algorithm is
introduced to estimate unknown parameters. The algorithm is
shown to be strongly convergent and asymptotically efficient
in terms of the CR lower bound. The results of this paper
can be extended to more general cases of multi-threshold
quantized observations. The method can potentially be extended
to identify Hammerstein systems and other nonlinear systems
under quantized inputs and quantized observations.
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